Friday, July 24, 2015

The National Science Foundation funds large-scale applications of infrared cameras in schools


We are pleased to announce that the National Science Foundation has awarded the Concord Consortium, Next Step Living, and Virtual High School a grant of $1.2M to put innovative technologies such as infrared cameras into the hands of thousands of secondary students. This education-industry collaborative will create a technology-enhanced learning pathway from school to home and then to cognate careers, establishing thereby a data-rich testbed for developing and evaluating strategies for translating innovative technology experiences into consistent science learning and career awareness in different settings. While there have been studies on connecting science to everyday life or situating learning in professional scenarios to increase the relevance or authenticity of learning, the strategies of using industry-grade technologies to strengthen these connections have rarely been explored. In many cases, often due to the lack of experiences, resources, and curricular supports, industry technologies are simply used as showcases or demonstrations to give students a glimpse of how professionals use them to solve problems in the workplace.


Over the last few years, however, quite a number of industry technologies have become widely accessible to schools. For example, Autodesk has announced that their software products will be freely available to all students and teachers around the world. Another example is infrared cameras that I have been experimenting and blogging since 2010. Due to the continuous development of electronics and optics, what used to be a very expensive scientific instrument is now only a few hundred dollars, with the most affordable infrared camera falling below $200.

The funded project, called Next Step Learning, will be the largest-scale application of infrared camera in secondary schools -- in terms of the number of students that will be involved in the three-year project. We estimate that dozens of schools and thousands of students in Massachusetts will participate in this project. These students will use infrared cameras provided by the project to thermally inspect their own homes. The images in this blog post are some of the curious images I took in my own house using the FLIR ONE camera that is attached to an iPhone.

In the broader context, the Next Generation Science Standards (NGSS) envisions “three-dimensional learning” in which the learning of disciplinary core ideas and crosscutting concepts is integrated with science and engineering practices. A goal of the NGSS is to make science education more closely resemble the way scientists and engineers actually think and work. To accomplish this goal, an abundance of opportunities for students to practice science and engineering through solving authentic real-world problems will need to be created and researched. If these learning opportunities are meaningfully connected to current industry practices using industry-grade technologies, they can also increase students’ awareness of cognate careers, help them construct professional identities, and prepare them with knowledge and skills needed by employers, attaining thereby the goals of both science education and workforce development simultaneously. The Next Step Learning project will explore, test, and evaluate this strategy.

No comments: