Figure 1. The salinity gradient and temperature
gradient observed in an open cup of saturated saltwater. |
Let's do an experiment to explore a bit further. I prepared two cups of saturated saltwater. One open and the other sealed. I let them sit overnight and then checked the salinity and temperature distribution the next day using Vernier's salinity sensor and temperature sensor. I did this by moving the salinity sensor and the temperature sensor together up and down in the saltwater. Figure 1 shows the results for the open cup.
To measure the data for the closed cup, I first removed the seal and then quickly did the measurement. Since the salinity and temperature gradient would take some time to re-adjust after the seal was removed, we can pretty much assume that the results I got approximately reflect what would have been measured if the seal had not been removed. Figure 2 shows the results.
The comparison of the results shows that the salinity gradient is about the same for the open and closed cup--the bottom is about 1.3 ppt saltier than the top, but the temperature gradients are quite different--the open cup measured about three times as large as the closed cup (0.3°C vs. 0.1°C).
Due to the evaporative cooling effect, the overall temperature of the open cup is at least 0.5°C lower than the closed one.
What do these results suggest? Is it possible that a weak temperature gradient exists in a closed system that does not have the driving force of evaporative updraft?
No comments:
Post a Comment