Thursday, May 21, 2015

Book review: "Simulation and Learning: A Model-Centered Approach" by Franco Landriscina

Interactive science (Image credit: Franco Landriscina)
If future historians were to write a book about the most important contributions of technology to improving science education, it would be hard for them to skip computer modeling and simulation.

Much of our intelligence as humans originates from our ability to run mental simulations or thought experiments in our mind to decide whether it would be a good idea to do something or not to do something. We are able to do this because we have already acquired some basic ideas or mental models that can be applied to new situations. But how do we get those ideas in the first place? Sometimes we learn from our experiences. Sometimes we learn from listening to someone. Now, we can learn from computer simulation, which was carefully programmed by someone who knows the subject matter well and is typically expressed by a computer through interactive visualization based on some sort of calculation. In the cases when the subject matter is entirely alien to students such as atoms and molecules, computer simulation is perhaps the most effective form of instruction. Given the importance of mental simulation in scientific reasoning, there is no doubt that computer simulation, bearing some similarity with mental simulation, should have great potential in fostering learning.

Constructive science (Image credit: Franco Landriscina)
Although enough ink has been spilled on this topic and many thoughts have existed in various forms for decades, I found the book "Simulation and Learning: A Model-Centered Approach" by Dr. Franco Landriscina, an experimental psychologist in Italy, is a masterpiece that I must have on my desk and chew over from time to time. What Dr. Landriscina has accomplished in a book less than 250 pages is amazingly deep and wide. He starts with fundamental questions in cognition and learning that are related to simulation-based instruction. He then gradually builds a solid theoretical foundation for understanding why computer simulation can help people learn and think by grounding cognition in the interplay between mental simulation (internal) and computer simulation (external). This intimate coupling of internalization and externalization leads to some insights as for how the effectiveness of computer simulation as an instructional tool can be maximized in various cases. For example, Landriscina's two illustrations, embedded in this blog post, represent how two ways of using simulations in learning, which I coined as "Interactive Science" and "Constructive Science," differ in terms of the relationships among the foundational components in cognition and simulation.

This book is not only useful to researchers. Developers should benefit from reading it, too. Developers tend to create educational tools and materials based on the learning goals set by some education standards, with less consideration on how complex learning actually happens through interaction and cognition in reality. This succinct book should provide a comprehensive, insightful, and intriguing guide for those developers who would like to understand more deeply about simulation-based learning in order to create more effective educational simulations.

Tuesday, May 12, 2015

SimBuilding on iPad

SimBuilding (alpha version) is a 3D simulation game that we are developing to provide a more accessible and fun way to teach building science. A good reason that we are working on this game is because we want to teach building science concepts and practices to home energy professionals without having to invade someone's house or risk ruining it (well, we have to create or maintain some awful cases for teaching purposes, but what sane property owner would allow us to do so?). We also believe that computer graphics can be used to create some cool effects that demonstrate the ideas more clearly, providing complementary experiences to hands-on learning. The project is funded by the National Science Foundation to support technical education and workforce development.

SimBuilding is based on three.js, a powerful JavaScript-based graphics library that renders 3D scenes within the browser using WebGL. This allows it to run on a variety of devices, including the iPad (but not on a smartphone that has less horsepower, however). The photos in this blog post show how it looks on an iPad Mini, with multi-touch support for navigation and interaction.

In its current version, SimBuilding only supports virtual infrared thermography. The player walks around in a virtual house, challenged to correctly identify home energy problems in a house using a virtual IR camera. The virtual IR camera will show false-color IR images of a large number of sites when the player inspects them, from which the player must diagnose the causes of problems if he believes the house has been compromised by problems such as missing insulation, thermal bridge, air leakage, or water damage. In addition to the IR camera, a set of diagnostics tools is also provided, such as a blower-door system that is used to depressurize a house for identifying infiltration. We will also provide links to our Energy2D simulations should the player become interested in deepening their understanding about heat transfer concepts such as conduction, convection, and radiation.

SimBuilding is a collaborative project with New Mexico EnergySmart Academy at Santa Fe. A number of industry partners such as FLIR Systems and Building Science Corporation are also involved in this project. Our special thanks go to Jay Bowen of FLIR, who generously provided most of the IR images used to create the IR game scenes free of charge.