Creating an infrared street view using SmartIR and FLIR ONE |
IR homework |
We are not the only group that realized this possibility (but we are likely the first one that came up with the notion and name of TIS). A few startup companies in Boston area have worked in this frontier earlier this decade. But none of them has tapped into the potential of smartphone technologies. With a handful of drive-by trucks or fly-by drones with a bunch of mounted infrared cameras, it probably would take these companies a century to complete this thermal survey for the entire country. Furthermore, the trucks can only take images from the front of a building and the drones can only take images from above, which mean that their data are incomplete and cannot be used to create the thermal web that we are imagining. In some cases, unsolicited thermal scan of people's houses may even cause legal troubles as thermal signatures may accidentally disclose sensitive information.
Our solution is based on FLIR ONE, a $200-ish thermal camera that can be plugged into a smartphone (iOS or Android). The low cost of FLIR ONE, for the first time in history, makes it possible for the public to participate in this thermal survey. But even with the relatively low price tag, it is simply unrealistic to expect that a lot of people will buy the camera and scan their own houses. So where can we find a lot of users who would volunteer to participate in this effort?
Let's look elsewhere. There are four million children entering the US education system each year. Every single one of them is required to spend a sizable chunk of their education on learning thermal science concepts -- in a way that currently relies on formalism (the book shows you the text and math, you read the text and do the math). IR cameras, capable of visualizing otherwise invisible heat flow and distribution, is no doubt the best tool for teaching and learning thermal energy and heat transfer (except for those visually impaired -- my apology). I think few science teachers would disagree with that. And starting this year, educational technology vendors like Vernier and Pasco are selling IR cameras to schools.
What if we teach students thermal science in the classroom with an IR camera and then ask them to inspect their own homes with the camera as a homework assignment? At the end, we then ask them to acquire their parents' permissions and contribute their IR images to the Infrared Street View project. If millions of students do this, then we will have an ongoing crowdsourcing project that can engage and mobilize many generations of students to come.
Sensor-based artificial intelligence |
Thermogram sphere |
Virtual infrared reality (VIR) viewed with Google Cardboard |
The second one is virtual infrared reality, or VIR in short, to accomplish true, immersive thermal vision. VIR is a technology that integrates infrared thermography with virtual reality (VR). Based on the orientation and GPS sensors of the phone, SmartIR can create what we called a thermogram sphere and then knit them together to render a seamless IR view. A VIR can be uploaded to Google Maps so that the public can experience it using a VR viewer, such as Google's Cardboard Viewer. We don't know if VIR is going to do any better than 2D IR images in promoting the energy efficiency business, but it is reasonable to assume that many people would not mind seeing a cool (or hot) view like this while searching their dream houses. For the building science professionals, this may even have some implications because VIR provides a way to naturally organize the thermal images of a building to display a more holistic view of what is going on thermally.
With these innovations, we may eventually be able to realize our vision of inventing a visual 3D web of thermal data, or the thermographic information system, that will provide a massive data set for governments and companies to assess the state of residential energy efficiency on an unprecedented scale and with incredible detail.
2 comments:
Nice blog!! Thanks for sharing it, it’s really helpful. I know the best blog where you can learn about computer vision libraries & explain how the computer detects the pictures in an exceptional way.
Thank you for thhis
Post a Comment