IR: Watch the YouTube video |
Augmentation is conventionally in real-time and in semantic context with environmental elements. With the help of AR technology, the information about the surrounding real world of the user becomes digitally manipulable. Artificial information about the environment and its objects can be overlaid on the real world to achieve seamless effects and user experiences.
Our NSF-funded Mixed-Reality (MR) Labs Project has set out to explore how AR/MR technologies can support "augmented inquiry" to help students learn abstract concepts that cannot be directly seen or felt in purely hands-on lab activities.
AR: Watch the YouTube video |
The first image in this post shows an IR image of a poster board heated by a hair dryer. The second image shows a demo of AR thermal imaging: When a hair dryer blows hot air to a liquid crystal display (LCD), the AR system reacts as if hot air could flow into the screen and leave a trace of heat on the screen, just like what we see in the IR image above. You may click the links below the images to watch the recorded videos.
The tricky part of MR Labs is that, in order to justify the augmentation of a computer simulation to a physical activity, the simulation should be a good approximation of what happens in the real world. We used our computational fluid dynamics (CFD) program, Energy2D, to accomplish this. There are many more demos of MR Labs using Energy2D, which can be viewed at this website.