Wednesday, July 31, 2013

Fair asessment for engineering design?

The student's design #1
In our June study on engineering design in a high school, one student's designs caught my eye. The design challenge required students to use Energy3D to design a cluster of buildings in a city block that takes solar radiation into consideration, but this particular student came up with two neat designs.

The student's design #2
The student didn't pay much attention to the solar design part, but both designs are, I would say, hmm, beautiful. I have to admit that I am not an architect and I am judging this mostly based on my appreciation of the mathematical beauty (see Design #1) expressed in these designs. But even so, I feel that this is something worth my writing, because -- considering that the student absolutely did not know anything about Energy3D before -- it is amazing to see that how quickly he mastered the tool and came up with pretty sophisticated designs that look pleasant to my picky eyes. Where did his talent come from? I wish I had a chance to ask him.

And then the interesting story is that when I showed these designs to a colleague, she actually had a different opinion about them (compared with other designs that I think are not great). This reflects how subjective and unreliable performance assessment based on product analysis could sometimes become. While I cannot assert that my assessment is more justified, I can imagine how much efforts and thoughts this student put into these extremely well-conceived and polished designs (look how perfectly symmetric they are). This cannot be possibly the results of some random actions. A negative assessment might not do justice to this student's designs.

Which is why I had to invent the process analytics, an assessment technique that aims to provide more comprehensive, more trustworthy evaluation of students' entire design processes, not just on the final looks of the products and the evaluator's personal taste.

Sunday, July 28, 2013

SimBuilding funded by the National Science Foundation

A thermal bridge simulation in SimBuilding
Building science is, to a large extent, a “black box” to many students, as it involves many invisible physical processes such as thermal radiation, heat transfer, air flow, and moisture transport that are hard to imagine. But students must learn how these processes occur and interact within a building in order to understand how design, construction, operation, and maintenance affect them and, therefore, the wellbeing of the entire building. These processes form a “science envelope” that is much more difficult to understand than the shape of the building envelope alone. With 3D graphics that can visualize these invisible processes in a virtual building, simulation games provide a promising key to open the black box. They offer a highly interactive learning environment in which STEM content and pedagogy can be embedded in the gameplay, game scores can be aligned to educational objectives to provide formative assessments, and students can be enticed to devote more time and explore more ramifications than didactic instruction. A significant advantage is that students can freely experiment with a virtual building to learn a concept before exploring it in a real building with all the consequences and costs that may entail.

A new grant ($900K) from the National Science Foundation will allow us to develop a simulation game engine called SimBuilding based on computational building simulation. The application of advanced building simulation technologies to developing training simulation games will be an original contribution of this project. Although building simulation has become an important tool in the industry and can be very helpful in understanding how a building works, it has never been used to build simulation games before. SimBuilding will unveil this untapped instructional power. Furthermore, this game engine will be written in JavaScript and WebGL, allowing it to run on most computing devices.

Amanda Evans, Director of Center of Excellence for Green Building and Energy Efficiency at Santa Fe Community College in New Mexico, will be our collaborator on this grant.