Monday, March 2, 2015

A stock-and-flow model for building thermal analysis

Figure 1. A stock-and-flow model of building energy.
Our Energy3D CAD software has two built-in simulation engines for performing solar energy analysis and building thermal analysis. I have extensively blogged about solar energy analysis using Energy3D. This article introduces building thermal analysis with Energy3D.

Figure 2. A colonial house.
The current version of the building energy simulation engine is based on a simple stock-and-flow model of building energy. Viewed from the perspective of system dynamics—a subject that studies the behavior of complex systems, the total thermal energy of a building is a stock and the energy gains or losses through its various components are flows. These gains or losses usually happen via the energy exchange between the building and the environment through the components. For instance, the solar radiation that shines into a building through its windows are inputs; the heat transfer through its walls may be inputs or outputs depending on the temperature difference between the inside and the outside.

Figure 3. The annual energy graph.
Figure1 illustrates how energy flows into and out of a building in the winter and summer, respectively. In order to maintain the temperature inside a building, the thermal energy it contains must remain constant—any shortage of thermal energy must be compensated and any excessive thermal energy must be removed. These are done through heating and air conditioning systems, which, together with ventilation systems, are commonly known as HVAC systems. Based on the stock-and-flow model, we can predict the energy cost of heating and air conditioning by summing up the energy flows in various processes of heat transfer, solar radiation, and energy generation over all the components of the building such as walls, windows, or roofs and over a certain period of time such as a day, a month, or a year.

Figure 2 shows the solar radiation heat map of a house and the distribution of the heat flux density over its building envelope. Figure 3 shows the results of the annual energy analysis for the house shown in Figure 2.

More information can be found in Chapter 3 of Energy3D's User Guide.

Friday, February 20, 2015

Energy2D video tutorials in English and Spanish

Many users asked if there is any good tutorial of Energy2D. I apologize for the lack of a User Manual and other tutorial materials (I am just too busy to set aside time for writing up some good documentations).


So Carmen Trudell, an architect who currently teaches at the School of Architecture of the University of Virginia, decided to make a video tutorial of Energy2D for her students. It turned out to be an excellent overview of what the software is capable of doing in terms of illustrating some basic concepts related to heat transfer in architectural engineering. She also kindly granted permission for us to publish her video on Energy2D's website so that other users can benefit from her work.

If you happen to come from the Spanish-speaking part of the world, there is also a Spanish video tutorial made by Gabriel Concha based on an earlier version of Energy2D.

Thursday, February 19, 2015

Beautiful Chemisty won the Vizzies Award

The National Science Foundation and the Popular Science Magazine have announced that “Beautiful Chemistry” won the Expert's Choice Award for Video at the 2015 Visualization Challenge, known as Vizzies. According to the Popular Science Magazine,
For many, the phrase “chemical reactions” conjures memories of tedious laboratory work and equations scribbled on exams. But Yan Liang, a professor at the University of Science and Technology of China in Hefei, sees art in the basic science. Last September, Liang and colleagues launched beautiful​chemistry.net to highlight aesthetically pleasing chemistry. Their video showcases crystallization, fluorescence, and other reactions or structures shot in glorious detail. Liang says finding experiments that meet their visual standards has been a challenge. “Many reactions are very interesting, but not beautiful,” he says. “But sometimes, when shot at close distance without the distraction of beakers or test tubes, ordinary reactions such as precipitation can be very beautiful.”
Beautiful Chemistry is the first of the Beautiful Science Series that Prof. Liang has been planning. The series will include two new titles, Beautiful Simulations and Beautiful Infrared, which we will co-produce with Prof. Liang this summer while he visits Boston.

Congratulations to Prof. Liang for this amazing work!

Thursday, January 29, 2015

Comparing two smartphone-based infrared cameras

Figure 1
With the releases of two competitively priced IR cameras for smartphones, the year 2014 has become a milestone for IR imaging. Early in 2014, FLIR unveiled the $349 FLIR ONE, the first IR camera that can be attached to an iPhone. Months later, a startup company Seek Thermal released a $199 IR camera that has an even higher resolution and is attachable to most smartphones. In addition, another company Therm-App released an Android mobile thermal camera that specializes in long-range night vision and high-resolution thermography, priced at $1,600. The race is on... Into 2015, FLIR announced a new version of FLIR ONE that supports both Android and iOS and will probably be even more aggressively priced.

Figure 2
All these game changers can take impressive IR images just like taking conventional photos and record IR videos just like recording conventional videos, and then share them online through an app. The companies also provide a software developers kit (SDK) for a third party to create apps linked to their cameras. Excited by these new developments, researchers at several Swedish universities and I have embarked an international collaboration towards the vision that IR cameras will one day become as necessary as microscopes in science labs.

Figure3
To test these new IR cameras, I did an easy-to-do experiment (Figure 1) that shows a paradoxical warming effect on a piece of paper placed on top of a cup of (slightly cooler than) room-temperature water. This seemingly simple experiment actually leads to very deep science at the molecular level, as blogged before.

I took images using FLIR ONE (Figure 2) and SEEK (Figure 3), respectively. These images are shown to the right for comparison. As you can see, both cameras are sensitive enough to capture the small temperature rise caused by water absorption and condensation underside the paper.

The FLIR ONE has a nice feature that contextualizes the false-color IR image by overlaying it on top of the edges (where brightness changes sharply) of the true-color image taken at the same time by the conventional camera of the smartphone. With this feature, you can see the sharp edges of the paper in Figure 2.